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This article aims to firstly illustrate how Binomial coefficients coincide with Pascal’s triangle, and secondly show that 

the Fibonacci sequence is embedded inside Pascal’s triangle.  Additionally, this article features a general form of 

Pascal’s Triangle and proved that a general form of a second order difference equation is also embedded inside the 

General Pascal’s Triangle.  

To first understand how Pascal’s triangle works, it is important to note that the entire Pascal’s triangle can be 

generated with just the number “1”. Based on the following figure, there is a number “1” in the middle and infinite 

zeroes that extend past both sides of “1” (left and right). By adding two adjacent terms, another term is created in the 

following row (as represented by the numerous inverted triangles). This is how Pascal’s triangle is generated 

continuously. 
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Next, this article aims to prove how the numbers in Pascal’s triangle coincide with Binomial coefficients.  

However, first and foremost, the formula  (
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
  is essential in proving this relationship. The proof for this 

formula can be argued using combinatorics. 

Consider a scenario where there are 𝑟 identical 𝐴 letters and (𝑛 − 𝑟) identical 𝐵 letters to be arranged in a straight 

line. 

This problem can be solved by one of the 3 following methods: 

Method 1: Out of the 𝑛 slots chosen, there are 𝑟 slots to place the 𝐴 letters. As for the rest of the (𝑛 − 𝑟) slots, 

there is only 1 choice to allocate the rest of the 𝐵 letters.  Hence, this scenario can be solved in (
𝑛
𝑟

) 

ways. 

Method 2: By solving this directly, there are 
𝑛!

𝑟!(𝑛−𝑟)!
 ways to rearrange all the letters. 

Method 3: Out of the slots 𝑛, (𝑛 − 𝑟) slots are chosen to place the 𝐵 letters. As for the rest of the 𝑟  slots, there 

is only 1 choice to allocate the rest of the 𝐴 letters. Hence, this scenario can be solved in (
𝑛

𝑛 − 𝑟
) 

ways. 

Since all 3 methods are solving the same scenario, their answers are all equivalent.  

Hence, (
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
= (

𝑛
𝑛 − 𝑟

) . 
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Next, (
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
  needs to be used to explain 0! = 1 because the first number “1” in the first row of Pascal’s 

triangle is (
0
0

) =
0!

0!(0−0)!
= 1. 

By substituting 𝑟 = 𝑛, the result is (
𝑛
𝑛

) = 1. Hence, (
𝑛
𝑛

) =
𝑛!

𝑛!(𝑛−𝑛)!
= 1  and 0! = 1 

By observation, since (
𝑛
𝑘

) = 0 for 𝑘 < 0 or 𝑘 > 𝑛, where 𝑛 ∈ ℤ+ ∪ {0} and 𝑘 ∈ ℤ, this can be used to explain the 

infinite series of zeroes that extend past the left and right borders of Pascal’s Triangle. 

Finally, the formula (
𝑛
𝑟

) + (
𝑛

𝑟 + 1
) = (

𝑛 + 1
𝑟 + 1

) needs to proven. Since proof using algebraic manipulation is commonly 

known, this article has created a new method of proving by using a combinatorics argument. 

The proof begins by choosing from 𝑛 ladies and 1 gentleman to form a committee of 𝑟 + 1 people.  The number of 

ways can be calculated using two methods. 

Method 1: The direct method is simply (
𝑛 + 1
𝑟 + 1

) ways. 

Method 2: There are 2 cases to be considered, namely whether the gentleman is chosen or not. 

Case 1: If the gentleman is chosen, there is a need to choose another 𝑟 ladies from the 𝑛 ladies, which results in (
𝑛
𝑟

) 

ways. 

Case 2: If the gentleman is not chosen, there is a need choose another 𝑟 + 1 ladies from the 𝑛 ladies, which results in 

(
𝑛

𝑟 + 1
) ways. 

Note that case 1 and 2 are mutually exclusive, hence, the total number of ways is (
𝑛
𝑟

) + (
𝑛

𝑟 + 1
). 

Since both methods are solving the same question, hence, (
𝑛
𝑟

) + (
𝑛

𝑟 + 1
) = (

𝑛 + 1
𝑟 + 1

). 

This can be rearranged to express the following geometrically: 

(
𝑛
𝑟

) (
𝑛

𝑟 + 1
)

(
𝑛 + 1
𝑟 + 1

)

 

Based on the figure above, it is now clear that the numbers in Pascal’s triangle and binomial coefficients must coincide. 

Next, this article shall explain and prove the observation that the Fibonacci sequence is also embedded inside Pascal’s 

triangle.   

Recalling the Fibonacci sequence: 

𝑢𝑛+2 = 𝑢𝑛+1 + 𝑢𝑛 ;  𝑢1 = 𝑢2 = 1, 𝑛 ∈ ℤ+ 

This can be extended to  

𝑣𝑛+2 = 𝑣𝑛+1 + 𝑣𝑛 ;  𝑣0 = 0, 𝑣1 = 1, 𝑛 ∈ ℤ+ ∪ {0} 

 

As such, 𝑣𝑛 is defined as follows: 

𝑣𝑛 = {
0 for 𝑛 = 0

𝑢𝑛 for  𝑛 ∈ ℤ+ 

 

 



By relooking at Pascal’s triangle in the following manner: 
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  1  3  3  1   

           

 1  4  6  4  1  

           

1  5   10  10  5  1 
 

As such, it can be observed that 𝑇𝑛 needs to be considered when 𝑛 = 2𝑚 and 𝑛 = 2𝑚 + 1 where 𝑚 ≥ 1 with 𝑇0 = 0 : 

Case 1:  When 𝑛 = 2𝑚,  𝑇𝑛 = 𝑇2𝑚 = (
2𝑚 − 1

0
) + (

2𝑚 − 2
1

) + (
2𝑚 − 3

2
) + ⋯ + (

2𝑚 − 𝑚
𝑚 − 1

) 

    𝑇𝑛−1 = 𝑇2𝑚−1 = (
2𝑚 − 2

0
) + (

2𝑚 − 3
1

) + (
2𝑚 − 4

2
) + ⋯ + (

𝑚 − 1
𝑚 − 1

) 

    𝑇𝑛−2 = 𝑇2𝑚−2 = (
2𝑚 − 3

0
) + (

2𝑚 − 4
1

) + (
2𝑚 − 5

2
) + ⋯ + (

𝑚 − 1
𝑚 − 2

) 

𝑇𝑛−1 + 𝑇𝑛−2 = (
2𝑚 − 2

0
) + [(

2𝑚 − 3
0

) + (
2𝑚 − 3

1
)] + [(

2𝑚 − 4
1

) + (
2𝑚 − 4

2
)] + ⋯ + [(

𝑚 − 1
𝑚 − 2

) + (
𝑚 − 1
𝑚 − 1

)] 

  =(
2𝑚 − 1

0
) + (

2𝑚 − 2
1

) + (
2𝑚 − 3

2
) + ⋯ + (

𝑚
𝑚 − 1

) = 𝑇2𝑚 = 𝑇𝑛 (shown)   

Note that the formula (
𝑛
𝑟

) + (
𝑛

𝑟 + 1
) = (

𝑛 + 1
𝑟 + 1

) was applied repeatedly. 

Case 2:  When 𝑛 = 2𝑚 + 1, 𝑇𝑛 = 𝑇2𝑚+1 = (
2𝑚
0

) + (
2𝑚 − 1

1
) + (

2𝑚 − 2
2

) + ⋯ + (
2𝑚 − 𝑚

𝑚
) 

    𝑇𝑛−1 = 𝑇2𝑚 = (
2𝑚 − 1

0
) + (

2𝑚 − 2
1

) + (
2𝑚 − 3

2
) + ⋯ + (

𝑚
𝑚 − 1

) 

    𝑇𝑛−2 = 𝑇2𝑚−1 = (
2𝑚 − 2

0
) + (

2𝑚 − 3
1

) + (
2𝑚 − 4

2
) + ⋯ + (

𝑚 − 1
𝑚 − 1

) 

𝑇𝑛−1 + 𝑇𝑛−2 = (
2𝑚 − 1

0
) + [(

2𝑚 − 2
0

) + (
2𝑚 − 2

1
)] + [(

2𝑚 − 3
1

) + (
2𝑚 − 3

2
)] + ⋯ + [(

𝑚 − 1
𝑚 − 1

) + (
𝑚

𝑚 − 1
)] 

  = (
2𝑚
0

) + (
2𝑚 − 1

1
) + (

2𝑚 − 2
2

) + ⋯ + (
𝑚
𝑚

) = 𝑇2𝑚+1 = 𝑇𝑛 (shown) 

Hence, it has been proven successfully that the Fibonacci sequence is embedded inside Pascal’s triangle by using 

Binomial coefficients. 

 

 

 

 

𝑇0 = 0

𝑇1 = 1

𝑇2 = 1

𝑇3 = 1 + 1 = 2

𝑇4 = 1 + 2 = 3 = 𝑇2 + 𝑇3

𝑇5 = 1 + 3 + 1 = 5 = 𝑇3 + 𝑇4

𝑇6 = 1 + 4 + 3 = 8 = 𝑇4 + 𝑇5



Next, this article will consider the second order difference equation 𝑢𝑛+2 = 𝛼𝑢𝑛+1 + 𝛽𝑢𝑛 ;  𝑢0 = 0, 𝑢1 = 1, 

𝑛 ∈ ℤ+ ∪ {0} such that both 𝛼 and 𝛽 are some constants. 

As such, it will generate 𝑢0 = 0, 𝑢1 = 1, 𝑢2 = 𝛼, 𝑢3 = 𝛼2 + 𝛽, 𝑢4 = 𝛼(𝛼2 + 𝛽) + 𝛽(𝛼) = 𝛼3 + 2𝛼𝛽,  

𝑢5 = 𝛼(𝛼3 + 2𝛼𝛽 ) + 𝛽(𝛼2 + 𝛽) = 𝛼4 + 3𝛼2𝛽 + 𝛽2, 𝑢6 = 𝛼(𝛼4 + 3𝛼2𝛽 + 𝛽2 ) + 𝛽(𝛼3 + 2𝛼𝛽) 

i.e. 𝑢6 = 𝛼5 + 4𝛼3𝛽 + 3𝛼𝛽2,  and so on… 

The General Pascal’s Triangle 

We define  𝐺𝑘
𝑛 = 0 for 𝑘 < 0 or 𝑘 > 𝑛 where 𝑛 ∈ ℤ+ ∪ {0},  𝑘 ∈ ℤ with  𝐺𝑘

𝑛 = 0 for 𝑛 ∈ ℤ−  and  𝐺0
0 = 1. 

We also define 𝛽( 𝐺)𝑘−1
𝑛  + 𝛼( 𝐺)𝑘

𝑛 = 𝐺𝑘  
𝑛+1 . This can be rearrange this to express the following geometrically: 

𝐺𝑘−1
𝑛  𝐺𝑘

𝑛

𝐺𝑘  
𝑛+1

 

As such, the following General Pascal’s Triangle can be successfully generated:  
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By relooking at the General Pascal’s triangle in the following manner:  

 

  

 

     1      

           

    α  𝛽     

           

   𝛼2  2𝛼𝛽  𝛽2   

 

           

  𝛼3  3𝛼2𝛽  3𝛼𝛽2  𝛽3   

           

 𝛼4  4𝛼3𝛽  6𝛼2𝛽2  4𝛼𝛽3  𝛽4  

           

𝛼5    5𝛼4𝛽   10𝛼3𝛽2  10𝛼2𝛽3  5𝛼𝛽4  𝛽5 
 

Similarly, one can observe that 𝑇𝑛 needs to be considered when 𝑛 = 2𝑚 and 𝑛 = 2𝑚 + 1, where 𝑚 ≥ 1 with 𝑇0 = 0 : 

 

𝑇0 = 0

𝑇1 = 1

𝑇2 = 𝛼

𝑇3 = 𝛼2 + 𝛽 = 𝛼𝑇2 + 𝛽𝑇1

𝑇4 = 𝛼3 + 2𝛼𝛽 = 𝛼𝑇3 + 𝛽𝑇2

𝑇5 = 𝛼4 + 3𝛼2𝛽 + 𝑥𝛽2 = 𝛼𝑇4 + 𝛽𝑇3

𝑇6 = 𝛼5 + 4𝛼3𝛽 + 3𝛼𝛽2 = 𝛼𝑇5 + 𝛽𝑇4



 

Case 1:  When 𝑛 = 2𝑚,  𝑇𝑛 = 𝑇2𝑚 = 𝐺0    
2𝑚−1 + 𝐺1    

2𝑚−2 + 𝐺2    
2𝑚−3 + ⋯ + 𝐺𝑚−1  

2𝑚−𝑚  

    𝑇𝑛−1 = 𝑇2𝑚−1 = 𝐺0    
2𝑚−2 + 𝐺1    

2𝑚−3 + 𝐺2    
2𝑚−4 + ⋯ + 𝐺𝑚−1

𝑚−1  

    𝑇𝑛−2 = 𝑇2𝑚−2 = 𝐺0    
2𝑚−3 + 𝐺1    

2𝑚−4 + 𝐺2    
2𝑚−5 + ⋯ + 𝐺𝑚−2

𝑚−1  

𝛼𝑇𝑛−1 + 𝛽𝑇𝑛−2 

= 𝛼( 𝐺0    
2𝑚−2 ) + [𝛽( 𝐺0    

2𝑚−3 ) + 𝛼( 𝐺1    
2𝑚−3 )] + [𝛽( 𝐺1    

2𝑚−4 ) + 𝛼( 𝐺2    
2𝑚−4 )] + ⋯ + [𝛽( 𝐺𝑚−2

𝑚−1 ) + 𝛼( 𝐺𝑚−1
𝑚−1 )] 

= 𝐺0    
2𝑚−1 + 𝐺1    

2𝑚−2 + 𝐺2    
2𝑚−3 + ⋯ + 𝐺𝑚−1

2𝑚 = 𝑇2𝑚 = 𝑇𝑛 (shown)   

Note that we apply the formula 𝛽( 𝐺)𝑘−1
𝑛  + 𝛼( 𝐺)𝑘

𝑛 = 𝐺𝑘  
𝑛+1  repeatedly many times.   

Case 2:  When 𝑛 = 2𝑚 + 1, 𝑇𝑛 = 𝑇2𝑚+1 = 𝐺0  
2𝑚 + 𝐺1    

2𝑚−1 + 𝐺2    
2𝑚−2 + ⋯ + 𝐺𝑚     

2𝑚−𝑚 = 𝑇2𝑚+1 

    𝑇𝑛−1 = 𝑇2𝑚 = 𝐺0    
2𝑚−1 + 𝐺1    

2𝑚−2 + 𝐺2    
2𝑚−3 + ⋯ + 𝐺𝑚−1 

𝑚    

    𝑇𝑛−2 = 𝑇2𝑚−1 = 𝐺0    
2𝑚−2 + 𝐺1    

2𝑚−3 + 𝐺2    
2𝑚−4 + ⋯ + 𝐺𝑚−1 

𝑚−1  

𝛼𝑇𝑛−1 + 𝛽𝑇𝑛−2 

= 𝛼( 𝐺0    
2𝑚−1 ) + [𝛽( 𝐺0    

2𝑚−2 ) + 𝛼( 𝐺1    
2𝑚−1 )] + [𝛽( 𝐺1    

2𝑚−3 ) + 𝛼( 𝐺2    
2𝑚−3 )] + ⋯ + [𝛽( 𝐺𝑚−1 

𝑚−1 ) + 𝛼( 𝐺𝑚     
2𝑚−𝑚 )] 

= 𝐺0  
2𝑚 + 𝐺1    

2𝑚−1 + 𝐺2    
2𝑚−2 + ⋯ + 𝐺𝑚     

2𝑚−𝑚 = 𝑇2𝑚+1 = 𝑇𝑛 (shown) 

 

Hence, it has been proven successfully that the sequence of a general 2nd order difference equation, with  initial 

conditions  𝑢0 = 0, 𝑢1 = 1 and 𝑢𝑛+2 = 𝛼𝑢𝑛+1 + 𝛽𝑢𝑛 , 𝑛 ∈ ℤ+ ∪ {0} is embedded inside the General Pascal’s Triangle.   

In the General Pascal’s triangle, it is obvious that the terms that appear in every horizontal row are the expansion of 

(𝛼 + 𝛽)𝑛 whereby 𝑛 ∈ ℤ+ ∪ {0}.  It is also interesting to note that 𝛼 and 𝛽 are assumed to be constants which are not 

restricted to only real numbers. In fact, 𝛼 and 𝛽 can also be complex numbers. 

The trinomial coefficients can be represented in a 3-dimensional tetrahedron diagram. Furthermore, it may be possible 

to show geometrically how a general 3rd order difference equation with specific conditions is embedded inside the 3-

dimensional tetrahedron diagram.  Perhaps, this shall be explored in future publications. 

  


